Agarose Gel Electrophoresis for the Separation of DNA Fragments
نویسندگان
چکیده
Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate concentration for their needs Prepare an agarose gel for electrophoresis of DNA samples Set up the gel electrophoresis apparatus and power supply Select an appropriate voltage for the separation of DNA fragments Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands Determine the sizes of separated DNA fragments.
منابع مشابه
Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide
In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely el...
متن کاملSection Ii Resolution and Recovery of Large Dna Fragments
This section describes the application of agarose gel electrophoresis to both analytical and preparative separation of DNA fragments. Standard agarose gels separate DNA fragments from ∼0.5 to 25 kb, whereas pulsed-field agarose gels resolve molecules from ∼10 to >2000 kb. Descriptions of standard and pulsed-field agarose gel electrophoresis as well as parameters affecting resolution of large DN...
متن کاملOptimization of the Analysis of Almond DNA Simple Sequence Repeats (SSRs) Through Submarine Electrophoresis Using Different Agaroses and Staining Protocols
Simple sequence repeat (SSR markers or microsatellites), based on the specific PCR amplification of DNA sequences, are becoming the markers of choice for molecular characterization of a wide range of plants because of their high polymorphism, abundance, and codominant inheritance. Different methods have been used for the analysis of the SSR amplified fragments being submarine agarose electropho...
متن کاملOptimization of Assay Conditions in Pulsed Field Gel Electrophoresis
Pulsed field gel electrophoresis allows separation and visualization of very large DNA molecules. This powerful technique is predominantly used in many aspects in molecular biology and medical diagnostics. Since the procedure for the preparation of the samples involves several steps, many different parameters can be changed and subsequently influence the resolution of the results. Therefore, in...
متن کاملThe mobilities of oligomers of phage lambda DNA and of yeast chromosomes in agarose gels during field
The mobilities of oligomers of phage lambda DNA and of yeast chromosomes in agarose gels during field inversion gel electrophoresis (FIGE) were measured at different pulse times and electric fields. Also the ratios between forward and backward pulse times and/or field gradients were varied. The problem of 'band inversion' during FIGE, leading to an ambiguity in the mobility of large DNA fragmen...
متن کامل